
Estimating the sampling error: Distribution of transition matrices and functions of transition
matrices for given trajectory data

Philipp Metzner*
Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, USA

Frank Noé† and Christof Schütte‡

Department of Mathematics and Computer Science, Free University Berlin, Arnimallee 6, D-14195 Berlin, Germany
�Received 22 November 2008; revised manuscript received 13 May 2009; published 13 August 2009�

The problem of estimating a Markov transition matrix to statistically describe the dynamics underlying an
observed process is frequently found in the physical and economical sciences. However, little attention has
been paid to the fact that such an estimation is associated with statistical uncertainty, which depends on the
number of observed transitions between metastable states. In turn, this induces uncertainties in any property
computed from the transition matrix, such as stationary probabilities, committor probabilities, or eigenvalues.
Assessing these uncertainties is essential for testing the reliability of a given observation and also, if possible,
to plan further simulations or measurements in such a way that the most serious uncertainties will be reduced
with minimal effort. Here, a rigorous statistical method is proposed to approximate the complete statistical
distribution of functions of the transition matrix provided that one can identify discrete states such that the
transition process between them may be modeled with a memoryless jump process, i.e., Markov dynamics. The
method is based on sampling the statistical distribution of Markov transition matrices that is induced by the
observed transition events. It allows the constraint of reversibility to be included, which is physically mean-
ingful in many applications. The method is illustrated on molecular dynamics simulations of a hexapeptide that
are modeled by a Markov transition process between the metastable states. For this model the distributions and
uncertainties of the stationary probabilities of metastable states, the transition matrix elements, the committor
probabilities, and the transition matrix eigenvalues are estimated. It is found that the detailed balance constraint
can significantly alter the distribution of some observables.
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I. INTRODUCTION

State transitions are essential to complex dynamical sys-
tems. In many such systems, the dynamics has multiple
scales in time, and, on a given time scale of interest, the
dynamics is metastable; i.e., there are regions in state space
�metastable sets� within which transitions are rapid compared
to the time scale of interest, while transitions between them
are rare events. A prominent example for such systems is
biomolecule �1�, whose dynamics involve various processes
such as binding of macromolecules and their ligands �2�,
complex conformational rearrangements switching between
native protein substates �3,4� to the folding of proteins and
RNA �5,6�. Further examples include Ising models �7�, me-
teorological systems �8�, and economic systems �9�.

The slow transitions between metastable states are often
well described by a memoryless jump process on a finite
discrete state space, say, S= �1, . . . ,m�, i.e., with a memory-
less master equation,

dp�t�
dt

= p�t�L , �1�

with p�t� being an m-dimensional row vector containing the
probability to find the system in each of its m states at time t.

L is a rate matrix with �Lij�i,j�S being the transition rate from
state i to state j and the diagonal elements are Lii=−� j�iLij
to ensure probability mass conservation. Alternatively, the
system dynamics can be described by a discrete-time Mar-
kov process using the transition matrix, T���, whose entries,
Tij, i, j�S, provide the probability of the system to be found
in state j at time t+� given that it was in state i at time t. The
time-discrete analog to Eq. �1� is the Chapman-Kolmogorov
equation,

p�k�� = p�0�Tk��� . �2�

Equations �1� and �2� provide equivalent results at discrete
times t=k�, k�N0 and are related by T���=exp��L� �10�.
Here, we will concentrate on the transition matrix T��� and
Eq. �2�. This transition matrix approach to molecular dynam-
ics �MD� has been developed and successfully applied in a
number of publications �11–16�. The memoryless ansatz im-
plies that the dynamics X�t��S between states is Markovian
at time lag �. In other words, the state of the system in the
next time step, t+�, is assumed to only depend on the sys-
tem’s state at the current time t and not on its previous his-
tory,

p�X�t + ���X�t�� = p�X�t + ���X�t�,X�t − ��,

X�t − 2��, . . . ,X�0�� .

In many cases it is not trivial to ensure Markovianity. The
definition of states and the time lag � need to be defined
appropriately. However, this issue is beyond the present
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study and is addressed elsewhere �11,12,14,15�.
Usually, T��� is not readily given but needs to be esti-

mated from a set of observations or simulations such as mo-
lecular dynamics simulations. Since these simulations are of

finite length, the estimated T̂��� is associated with uncer-
tainty. For a given set of observed transitions from trajectory

data, what is the uncertainty in T̂��� and how does this affect

the uncertainty of some function of T̂���, say, f�T̂����? This
question is addressed in the present paper.

II. BAYESIAN FORMULATION

Consider one trajectory Y = �y0=X�t=0� , . . . ,yN=X�t
=N��� given. �The generalization to multiple trajectories is
straightforward.� Let the frequency matrix C�Y�= �Cij�i,j�S
associated to a trajectory Y count the number of consecu-
tively observed transitions between states, i.e., Cij is the
number of observed transitions from state i at time t to state
j at time t+�, summed over all times t. In the limit of an
infinitely long trajectory, the elements of the underlying tran-
sition matrix T��� are given by

Tij��� = lim
N→�

Cij

�
k�S

Cik
,

where we dropped the dependency of the frequency matrix
on the given trajectory Y for notational simplicity. For a tra-
jectory of limited length, the underlying transition matrix
T��� cannot be uniquely determined. The probability that a
particular T��� would generate the observed trajectory is
given by

p�Y�T� = 	
k=0

N−1

Tyk,yk+1
= 	

i,j�S

Tij
Cij . �3�

In this paper we are interested in the opposite question: what
is the probability p�T �Y� that a particular transition matrix
T�=T���� has generated the observed data. By virtue of the
Bayesian theorem it follows that the law of p�T �Y� is pro-
portional to p�T�p�Y �T�, where p�T� is the prior probability
of transition matrices. The particular choice of the prior re-
flects knowledge or reasonable assumptions on the set of all
transition matrices before observing any data. Here we make
the restriction that the prior probability can be written in the
form 	i,j�STij

Bij with some prior count matrix B�Rm�m. To-
gether with the likelihood p�Y �T� in Eq. �3�, the law of the
posterior takes the form

P�T�Y� � p�T�p�Y�T� = 	
i,j�S

Tij
Bij+Cij = 	

i,j�S

Tij
Zij ,

where we have defined the effective count matrix Z=B+C.
Notice that the posterior is fully characterized by the effec-
tive count matrix Z which we emphasize in the following by
denoting the non-normalized probability density function
�PDF� of P�T �Y� by pZ�T�, i.e.,

P�T�Y� � pZ�T� = 	
i,j�S

Tij
Zij . �4�

The specific form of the prior probabilities allows a num-
ber of common prior distributions to be used by simply add-
ing a corresponding B matrix to the observed transition count
matrix.

�1� Uniform prior. The uniform prior is simply given by
using no prior counts, Bij =0,

pZ,uniform�T� = pC�T� = 	
i,j�S

Tij
Cij . �5�

This prior distribution is used in all numerical experiments
shown here. Notice again that for the uniform prior, pC�T� is
fully characterized by the frequency matrix C associated
with the observation Y.

�2� Jeffrey’s prior. Jeffrey’s prior is given by using Bij =
−0.5 for all i, j.

�3� 1/m prior. The 1 /m prior was suggested in �17� and
ensures that there is a constant amount of information in the
prior, independent of the size of the Markov model. It is
given by using Bij =−1+m−1 for all i, j.

Defining Zi=�k�SZik as the total number of effective tran-

sitions leaving the state i, it turns out that T̂���, given by

T̂ij��� =
Zij

Zi
, �6�

is the unique maximizer of pZ�T�. In the case of a uniform

prior �B
0�, T̂��� is also the unique maximizer of P�Y �T�
and, hence, is called maximum likelihood estimator. In the
limit of infinite sampling, pZ�T� converges toward a delta

distribution at T̂���. When sampling is finite, the uncertain-

ties of the entries of T̂��� may be estimated by the element-
wise standard deviations of pZ�T�.

Example II.1. In a first example we illustrate the PDF
pC�T� in Eq. �5� on a two-state Markov chain. Again, pC�T�
is fully characterized by the frequency matrix C, e.g.,

C = �5 2

3 10
� , �7�

associated with a given finite observation Y. Let T�R2�2 be
a stochastic matrix, i.e.,

T = �T11 T12

T21 T22
�

with Tij �0, 1� i, j�2, and Ti1+Ti2=1, i=1,2. The non-
normalized PDF pC�T� associated with the observation in Eq.
�7� takes the form

pC�T� = pC�T11,T12,T21,T22� = T11
5 T12

2 T21
3 T22

10.

Exploiting the stochasticity of T, pC�T� can be written as

pC�T� = pC�T12,T21� = �1 − T12�5T12
2 T21

3 �1 − T21�10,

T12,T21 � �0,1� .

See Fig. 1 for an illustration of the transition matrix density
function pC�T12,T21�.

In general, one is interested to compute a particular prop-
erty from the transition matrix, f(T���). f may represent any
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mathematical function, decomposition, or algorithm. In par-
ticular, we will consider the following properties here:

�1� The stationary distribution, �, which is the probability
to be in each state in equilibrium and is given by the left
one-normalized eigenvector of T to the eigenvalue 1.

�2� The positive real eigenvalues, �	1 , . . . ,	n�, n�m of
T���, which indicate the time scales of the transition pro-
cesses involved. The time scale implied by the ith positive
real eigenvalue is given by

ti
� = −

�

ln�	i�
. �8�

�3� The committor, qAB, which is the probability, for each
state i, that the system being in state i will go to state set B
next rather than to state set A. In protein folding, if A and B
correspond to the unfolded/folded state, qAB denotes the
probability of folding. The committor is computed via

�
j

�Tij − 
ij�qi
AB = 0 ∀ i � S \ �A � B� ,

qi
AB = 0 ∀ i � A ,

qi
AB = 1 ∀ i � B , �9�

with the Kronecker delta 
ij =1 for i= j and 0 otherwise.
One is then interested how the uncertainty of the transi-

tion matrix, induced by the distribution p�T �Y�, carries over
to uncertainties in the target function. In other words, for a
given observation Y, what is the distribution of target func-
tions, p(f�T� �Y), and their variance?

An approach suggested in �17,18� is based on first-order
perturbation theory: the posterior probability �Eq. �4�� is lo-
cally approximated by a multivariate Gaussian centered at

the maximum, T̂���, and the target function, f�T�, is approxi-
mated by a Taylor series truncated after the first term. The
linear approximation of f preserves the Gaussian shape of
the distribution, allowing the variance of f�T� to be calcu-
lated analytically. This approach is very efficient in order to
estimate the second moment of the sought distribution and

thus in estimating the sampling error. Nevertheless, the ap-
proach makes some two approximations which may cause
problems in practice:

�1� The method does not preserve stochasticity: the distri-
bution of each transition matrix element, Tij, is approximated
by a Gaussian and thus allows for a finite probability for
values �0 and �1, which are unphysical.

�2� It is unclear how well the first-order Taylor expansion
will perform for various nonlinear target functions f�T�.

An alternative to employing linear error analysis is to
generate an ensemble of transition matrices, according to the
posterior probability �Eq. �4�� to compute the target functions
f�T� for each sampled T, thus sampling the distribution of
f�T�. One approach, also suggested in �17,18�, is to rewrite
the posterior probability �Eq. �4�� as

p�T�Y� � 	
i�S

	
j�S

Tij
Zij = 	

i�S
	
j�S

Tij

ij−1,

where each factor 	 j�STij

ij−1 has the form of a Dirichlet dis-

tribution with the parameters 
ij =Zij +1. Efficient samplers
for the Dirichlet distribution exist �see p. 594 in �19,20��.
This approach ensures that all sampled transition matrices
are stochastic matrices �i.e., 0�Tij �1 and � jTij =1� drawn
from the correct posterior probability. Unfortunately, this ap-
proach does not allow properties of T to be ensured which
involve multiple rows. In particular, it is desirable to sample
only transition matrices that fulfill detailed balance with re-
spect to their stationary distribution, �,

�iTij = � jTji. �10�

Such method was proposed in �21�. Here, an alternative
and general method to sample transition matrices according
to the posterior probability �Eq. �5�� based on Markov chain
Monte Carlo �MCMC� is proposed. While it is computation-
ally more expensive than the linear error analysis and the
Dirichlet sampling, it allows the sampling to be restricted to
transition matrices fulfilling additional constraints, such as
Eq. �10�.

III. MONTE CARLO SAMPLER FOR TRANSITION
MATRICES

A Metropolis MCMC sampler is proposed. For notational
convenience we denote the set of all transition matrices by

T = 
T = �Tij�i,j��1,. . .,m�:Tij � �0,1�,

�
k=1

m

Tik = 1 ∀ i, j � �1, . . . ,m�� .

The MCMC sampler will generate an ensemble of transition
matrices drawn from T and distributed according to the pos-
terior probability in Eq. �5�.

Generally, a Metropolis MCMC scheme works as follows.
Suppose that pZ�T� is the PDF to be sampled from and TC is
the current state. In the proposal step a new state TN is gen-
erated with probability p�TC→TN�. In the acceptance step
the proposed state TN is accepted with the probability

T
12

T
21

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FIG. 1. �Color online� Probability distribution of 2�2 transition
probability matrices for the observation given in Eq. �7�. The result-
ing PDF, pC�T12,T21�= �1−T12�5T12

2 T21
3 �1−T21�10, is shown in terms

of the off-diagonal matrix elements. The color intensity encodes the
probability density. The darker the color the higher the value of the
probability density.
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pacc = min
1,
pZ�TN�p�TN → TC�
pZ�TC�p�TC → TN� � . �11�

If the new state is accepted, then TN is added to the ensemble
and the scheme restarts with TN as the current state. Other-
wise, the current state TC is added to the ensemble and is
considered again in the next iteration of the scheme. This
approach has a number of useful properties, including the
following:

�1� The target density function pZ�T� does not need to be
normalized as the normalization factor cancels in the ratio
pZ�TN� / pZ�TC� involved in the acceptance probability in Eq.
�11�. Thus, the proportionality factor in the posterior prob-
ability �Eq. �5�� does not need to be determined.

�2� In principle, any strategy for the generation of a new
state in the proposal step may be used as long as the prob-
abilities p�TC→TN� and p�TN→TC� can be evaluated and
any two permitted states can be connected via a finite num-
ber of proposal steps. The choice of the proposal step strat-
egy, however, is important for the efficiency and the conver-
gence of the sampling procedure �22�.

A. Monte Carlo in transition count matrix space

We will ensure the constraint � j=1
m Tij =1 while maintain-

ing efficiency through a change in variables. For this, con-

sider the matrices containing non-negative reals, K�R+
m2

,
and the transformation

Tij =
Kij

�
j
Kij

=
Kij

Ki

with Ki=� j=1
m Kij. This transformation maps K matrices to

transition matrices. Considering Eq. �6�, K may be inter-
preted as a matrix of fictitious transition counts and T as the
corresponding maximum likelihood transition matrix. This
mapping is formally written as the function

u�K� =
def�K11

K1
, . . . ,

Kmm

Km
� � T �12�

such that T=u�K�.
The crucial idea is now to generate an ensemble of count

matrices K= �K�R+
m2

� via an MCMC procedure which is
distributed according to the PDF pZ�T�. For this approach to
be valid, the mapping u�K� must be such that the ensemble
T= �T=u�K� ,K�K� is distributed according to pZ�T�. This is
indeed the case and it is established by Theorem V.1, stated
in the Appendix. Particularly, we show that the ensemble of
count matrices K has to be restricted on the subset

K = 
K � R+
m2

:ki
− � �

j=1

m

Kij � ki
+, i = 1, . . . ,m� , �13�

with 0�ki
−�ki

+, i=1, . . . ,m. The restriction on the set K is
independent of the proposal step and accounts for the nonin-
vertibility of the transformation u�K�. Furthermore, it ensures
the right statistical weights of the transition matrices in the
ensemble T= �T=u�K� ,K�K�.

Let �i , j�, 1� i , j�m, be a uniformly drawn pair of indi-
ces. We suggest the following proposal step scheme for KN
= ��KN�kl�, 1�k, l�m:

�KN�kl = 
�KC�ij + � if �k,l� = �i, j�
�KC�kl otherwise,

� �14�

where the random variable � is drawn such that the con-
straints,

0 � �KN�ij and ki
− � �

k=1

m

�KN�ik � ki
+, �15�

are satisfied. This is achieved by drawing � uniformly from
the interval

�a,b� = �max�− �KC�ij,ki
− − �KC�i�,ki

+ − �KC�i� , �16�

where �KC�i=�k=1
m �KC�ik. Consequently, the proposal prob-

abilities simply reduce to

p�KC → KN� = p�KN → KC� =
1

b − a
.

The algorithm in Fig. 2 summarizes our approach to gener-
ating an ensemble of transition matrices distributed accord-
ing to pZ�T�.

We end this section with a discussion of the computa-
tional cost of our proposed scheme. The computational cost
of a single iteration step is dominated by the evaluation of
the ratio pZ�u�KN�� / pZ�u�KC�� for the acceptance probability.
Since the update of KC in the proposal step affects only one
entry the evaluation of pacc can efficiently be performed in
O�m�. The overall memory requirement scales with
O��T�m2�, where �T� is the size of the transition matrix en-
semble. However, the overall performance and memory re-

Input: Count matrix Z = (Zij)i,j∈S,

set of boundary constants {(k−
i , k+

i )}, 1 ≤ i ≤ m.

Output:Ensemble T of transition matrices.

(1) Initialize KC with a nonnegative matrix, e.g., Z.

(2) Loop until convergence:

(2.1) Draw uniformly pair of indices (i, j) : 1 ≤ i, j ≤ m.

(2.2) Draw uniformly

ǫ ∈
[
max

{
−(KC)ij , k

−
i − (KC)i

}
, k+

i − (KC)i
]
.

(2.3) Generate proposal KN :

(KN )kl =

⎧⎪⎪⎨
⎪⎪⎩

(KC)ij + ǫ if (k, l) = (i, j),

(KC)kl otherwise.

(2.4) Accept KN with acceptance probability:

pacc = min
{

1, pZ(u(KN ))
pZ(u(KC))

}
.

(2.5) If KN is accepted then set KC ← KN .

(2.6) Add u(KC) to the transition matrix ensemble T .

FIG. 2. Metropolis algorithm: general case.
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quirement depend crucially on the matrix function f�T� under
consideration. If both scale reasonably, e.g., with O�m�, then
the proposed MCMC scheme can even be applied on state
spaces with m�1000 states.

B. Sampling reversible transition matrices

In this section we present a MCMC sampling scheme
which allows us to sample reversible transition matrices dis-
tributed according to posterior �5�. The scheme is based on
the following simple observation: if K�Rm�m is a symmet-
ric non-negative matrix then the transition matrix T=u�K�
�see Eq. �12�� is reversible with respect to the probability
distribution,

� =� �
j=1

m

K1j

�
i,j=1

m

Kij

, . . . ,

�
j=1

m

Kmj

�
i,j=1

m

Kij
� .

Hence, the symmetry of the proposed count matrices needs
to be ensured in the proposal step. Furthermore, to ensure the
correct statistical weights, the MCMC sampling has to be
restricted on the set

Ksym =
K�R+
m2

:Kij =Kji ∀ i, j��1, . . . ,m�,k− � �
i,j=1

m

Kij � k+�,

�17�

with 0�k−�k+��. For the particular choice of the set Ksym
see Theorem V.3 in the Appendix.

Let �i , j�, 1� i , j�m, be a uniformly drawn pair of indi-
ces. We propose the following proposal step scheme for a
symmetric proposal KN= ��KN�kl�, 1�k, l�m:

�KN�kl = 
�KC�ij + � if �k,l� � ��i, j�,�j,i��
�KC�kl otherwise,

� �18�

where � is uniformly drawn from the interval

�a,b� = 
�max�− �KC�ij,
1
2 �k− − SC��, 1

2 �k+ − SC�� if i � j

�max�− �KC�ij,k
− − SC�,k+ − SC� if i = j ,

�
�19�

with SC=�k,l=1
m �KC�kl.

The proposal scheme in Eq. �18� together with Eq. �19�
guarantees that KN�Ksym if KC�Ksym. Analogously to Eq.
�14�, the proposal probability p�KC→KN� is symmetric. Fi-
nally, the algorithm in Figure 3 summarizes our approach to
generating an ensemble of reversible transition matrices dis-
tributed according to pZ�T�.

IV. EXAMPLES

A. Distributions of nonreversible and reversible T matrices for
a three-state system

To illustrate the sampling algorithms, first a three-state
system is considered. Let C, given by

C = � 1 10 2

2 26 3

15 20 20
� , �20�

be a count matrix associated with a fictitious observation of a
three-state Markov chain. We compare the exact PDF pC�T�
in Eq. �5� with the sampled distribution of 3�3 transition
matrices �compare Example II.1�. In the first column of Fig.
4 we illustrate three different two-dimensional projections of
pC�T�. For example, panel A illustrates the marginal PDF,

p̃Y�T12,T13� = �1 − �T12 + T13��1T12
10T13

2 ,

with 0�T12, T13�1, and 0�1− �T12+T13��1. The panels
in the second column show the corresponding distributions
resulting from sampling of pC�T�. To be more precise, we
generated an ensemble of 106 transition matrices by means
of the algorithm in Fig. 2 and computed two-dimensional
histograms, respectively, depicted as contour plots. As an
initial transition count matrix we chose KC
1 /3 and we set
k−
0.9 and k+
1.1.

Finally, we sampled pC�T� restricted on the set of revers-
ible 3�3-transition matrices by means of the algorithm in
Fig. 3. We chose the same initial transition count matrix as in
the nonreversible case and generated an ensemble of 106

transition matrices �k−=�i,j=1
m �KC�i,j and

k+=1.05�i,j=1
m �KC�i,j�. The resulting two-dimensional mar-

ginal distributions are depicted in the panels C, F, and I. One
can clearly see that the marginal distributions illustrated in
panels C and F significantly differ from the corresponding
the nonreversible ones, respectively.

B. Nonreversible versus reversible sampling

To illustrate the effect of enforcing reversibility, let us
consider the reversible five-state transition matrix shown in

Input: Count matrix Z = (Zij)i,j∈S,

boundary constants k−, k+.

Output:Ensemble T of reversible transition matrices.

(1) Initialize KC with a symmetric and nonnegative matrix, e.g., 1
2 (Z + ZT ).

(2) Loop until convergence:

(2.1) Draw uniformly pair of indices (i, j) : 1 ≤ i, j ≤ m.

(2.2) Draw uniformly ǫ ∈ [a, b] (SC =
∑m

k,l=1(KC)kl)

[a, b] =

⎧⎪⎪⎨
⎪⎪⎩

[
max

{
−(KC)ij ,

1
2 (k− − SC)

}
, 1

2(k+ − SC)
]

if i �= j,

[max {−(KC)ij , k
− − SC} , k+ − SC] if i = j.

(2.3) Generate proposal KN :

(KN )kl =

⎧⎪⎪⎨
⎪⎪⎩

(KC)ij + ǫ if (k, l) ∈ {(i, j), (j, i)},

(KC)kl otherwise.

(2.4) Accept KN with acceptance probability:

pacc = min
{
1, pZ(u(KN ))

pZ(u(KC))

}
.

(2.5) If KN is accepted then set KC ← KN .

(2.6) Add u(KC) to the transition matrix ensemble T .

FIG. 3. Metropolis algorithm: reversible case.
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Fig. 5�a�. Each state in the series 1-2-3-4-5 has a stationary
probability ten times greater than the previous one, such that
the stationary probabilities of states 1 and 5 relate as
1 :10 000. The 1000 transition counts are generated for each
state and are distributed according to the transition probabili-
ties �see Fig. 5�b��. Based on these transition counts, the
distribution of transition matrices is sampled with and with-
out enforcing reversibility. These two distributions are al-
most identical in all transition matrix elements except for
T51. This transition probability is very low �T51=10−5� and
no transition has been observed, such that the only pieces of
information available to bound the value of T51 are the num-
ber of failed attempts to observe that transition �1000 times�
and constraints on the ensemble of transition matrices �sto-
chasticity and reversibility�. Figure 5�c� shows that without
reversibility, the distribution of T51 is very wide and its peak
is much larger than the true value T51=10−5. Enforcing re-
versibility strongly sharpens the distribution and its peak is
rather close to the true value. This is explained by the fact
that enforcing reversibility allows us to estimate a transition
probability i→ j based on the estimate of the backward tran-
sition probability j→ i if a good estimate for the relative
stationary probabilities of i and j is available. In the present
example,
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FIG. 4. �Color online� Visualization of the probability density of transition matrices to the observation in Eq. �20�. Different two-
dimensional marginal distributions �see axes� are shown in the columns. The exact and sampled distributions for stochastic matrices are
shown in columns 1 and 2, respectively. Column 3 shows the sampled distribution for stochastic matrices fulfilling detailed balance.
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matrix element T51 with and without enforcing reversibility.

METZNER, NOÉ, AND SCHÜTTE PHYSICAL REVIEW E 80, 021106 �2009�

021106-6



T15 = T51
�5

�1
. �21�

The relative probabilities �5 /�1 are well estimated be-
cause the sufficient number of counts is available along the
chain 1-2-3-4-5, and T51 can also be well estimated. Of
course, enforcing reversibility is only allowed if it is known
that the underlying system has reversible dynamics.

C. Probability distribution of spectrum and stationary
distribution and their dependence on the observation

length

In computer simulations of stochastic systems, such as
MD simulations, the matrix of observed transition counts, C,
depends on the length of the observations. Upon lengthening
the simulation, more transitions will be observed and the
implied distribution of transition matrices, pC�T�, will be-
come narrower. In a similar fashion, properties computed
from T will become generally more accurate as the length of
the simulation, and thus the C matrix, is increased. To study
this effect, consider a four-state system defined by the true
transition matrix,

T =�
0.7 0.3

0.5 0.47 0.03

0.01 0.96 0.03

0.03 0.97
� . �22�

Starting in state 4, we generated a realization according to
T, with the total length of 2000, and considered the first 100,
500, 1000, 5000, and 20 000 steps. For the C matrices cor-
responding to each of these chains, the nonreversible transi-
tion matrix distribution is sampled to convergence using the
algorithm in Fig. 2 where the parameters were chosen analo-
gously as in the previous example �see Sec. IV A�.

A particular interesting property of T is its spectrum, i.e.,
its eigenvalues 	i with i� �2,3 ,4�, which indicate the time
scales of the transition processes in the system, ti

�, via Eq.
�8�. The first eigenvalue, which is always 	1=1, is irrelevant
in this respect as it only represents the fact that the system as
a whole is never left �t1

�=��. The next time scales t2
� , t3

� , . . .
correspond to the time scales of the slowest and next-slowest
transition processes. Since there is a distribution of T, there
is not a unique eigenvalue spectrum for a given observed
transition count C but rather a spectral distribution. With an
increased number of observed transition counts, the uncer-
tainties of individual 	i will decrease, thus allowing for some
of these 	i to be distinguished from the rest of the spectral
distribution. Figure 6 shows the distribution of the two ei-
genvalues 1� �	2�� �	3� with second- and third-highest or-
ders of magnitude for the four simulations of different
lengths. For the 100 step simulation, the spectral distribu-
tions do not exhibit any distinctive features except a broad
peak. For 500 and 1000 steps, it is apparent that the distri-
bution starts to separate into two distinct eigenvalues close to
1 and for 5000 steps these two modes of the distribution are
clearly separated and closely located around the true eigen-
values of T which are 	2=0.9857 and 	3=0.9336 �indicated

by a disk and a triangle on the x axis, respectively�.
Next, the stationary distribution of T is estimated from the

four differently long simulations �see Fig. 7�. One can clearly
see that the distributions shift toward the correct values and
attain a Gaussian-like shape as the length of the realization
increases from N=500 to N=5000. After 20 000 steps, the
distributions are close to convergence and their peaks are
located around the true values �indicated by triangles on the
x axis�.

D. Example from molecular dynamics: A 33-state system

In order to illustrate the transition matrix sampling on a
realistic example, a 1 �s molecular dynamics �MD� simula-
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tion of the synthetic hexapeptide MR121-GSGSW peptide
�23� in explicit water is used. The simulation setup is de-
scribed in the Appendix. In order to concentrate on the meta-
stable dynamics, 33 metastable states were identified and the
interconversion between them was described with a Markov
model using a lag time of �=1 ns. See Appendix for the
detailed description of the Markov model construction. By
counting the transitions between metastable conformations at
time intervals of 1 ns along the trajectory, the transition
count matrix, C�N0

33�33, is obtained which serves as a test
case for the sampling procedure.

Our proposed method estimates the distribution of transi-
tion matrices via Monte Carlo sampling and, hence, allows
us to estimate the uncertainty of observables. Particularly, the
following observables are chosen:

�i� the self-transition probabilities T11 and Tmm corre-
sponding to the least and most-populated states, respectively,

�ii� the first two nontrivial dominant eigenvalues 1� �	2�
� �	3� of T,

�iii� the stationary probabilities ��1� and ��m� corre-
sponding to the least and most-populated states, and

�iv� the committor probability q�i1/2� corresponding to a
1/2-committor state where i1/2 is defined by

i1/2 = arg min
i�S

��q̂�i� − 0.5�� .

The committor function q̂� · � satisfies Eq. �9� with respect

to the maximum likelihood estimator T̂ given in Eq. �6�. The
set A and B consists of the respective state which corre-
sponds to the unfolded and folded states.

Now a couple of questions arise: �i� what is the burn-in
time of the MCMC sampling scheme, i.e., how many
samples are necessary to consider the underlying Markov
chain to be stationary, and �ii� how many samples are neces-

sary to consider the estimated distributions as “correct” �con-
verged�.

To answer the first question, we considered the time trace
of the self-transition probabilities T11, Tmm and the log-
likelihood function log�pC�T�� as a result of the algorithm in
Fig. 2. As initial count matrix we chose K
1 /33 and set
k−
1 and k+
2. The time traces depicted in the panels of
Fig. 8 suggest that the Markov chain is well mixed after
200 000 steps. Moreover, to guarantee decorrelated samples,
we took every 1000th sample of the continued sampling and
stopped after a total of 100 000 samples.

Next, we address the question of convergence. Among
different approaches to assess convergence of a MCMC
simulation, we employed the method of Gelman and Rubin
�24� where we followed the presentation in �25�. Suppose n
different chains have been simulated each with different start
points with respect to the distribution to be sampled.
Roughly spoken, the idea of the Gelman-Rubin method is to
infer convergence from comparing the between-chain statis-
tics and the within-chain statistics in terms of the variance. In

practice, the so-called potential scale factor R̂ is computed

which indicates convergence if R̂ is close to 1. Instead of
launching different simulations, here we divided one long
single-run simulation into 100 equally sized pieces and cal-

culated R̂ for each observable. The resulting R̂ values for
some observables are given in the first row in Table I and
indeed indicate convergence of the sampling.

The algorithm in Fig. 3 allows us to sample pC�T� subject
to the detailed balance constraint in Eq. �10�. Hence, we
asked if restricting on reversible transition matrices results in
significant differences of the observables’ distributions. To
make things comparable, we chose the same initial count
matrix, burn-in time, thinning, and sampling length as in the
nonreversible simulation where we used the boundary pa-
rameters k−=1 and k+=1.01.

E. Uncertainty in molecular dynamics simulations

Next, the effect of simulation length on the uncertainties
of T itself is studied. For this, segments of the complete
1 �s trajectory were considered, starting at time 0 and hav-
ing lengths between 10 and 1000 ns. For each segment, the
transitions between states were counted using always the
same definition of states. For each C matrix obtained in this
way, the T matrices were sampled without and with the de-
tailed balance constraint. Figure 9 shows the mean uncertain-
ties of the diagonal elements in panel �a� and the off-diagonal
elements in panel �b�. All uncertainties become smaller with
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FIG. 8. �Color online� The time trace of the self-transition prob-
abilities T11 and Tmm �panel A� and the log-likelihood function
log�pC�T�� �panel B�. Both time traces suggest that the Markov
chain is well mixed after 200 000 steps.

TABLE I. Convergence diagnostic due to Gelman and Rubin �24� in the nonreversible case with respect
to the observation C. We divided a single-run simulation with sampling size of 100 000 into 100 equally

sized pieces and calculated the potential scale factor R̂ for some observables, respectively. Since all R̂ values
are close to 1, we consider the sampling to be converged.

R̂�T11� R̂�Tmm� R̂��1� R̂��m� R̂�q�i1/2��

Nonreversible 1.0049 1.0183 1.0018 1.0087 1.0032

Reversible 1.0047 1.0177 1.0029 1.0578 1.0152
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increasing trajectory length. The decay of the uncertainty
follows roughly a power law with increasing simulation
length and is slower than the t−0.5 which would be expected
from uncorrelated samples. Introducing detailed balance in-
creases the uncertainty in the diagonal elements but de-
creases the uncertainty in the off-diagonal element. This is to
be expected since detailed balance constraints only the ratio
of symmetric off-diagonal elements.

Next, the effect of simulation length on the uncertainties
of properties derived from the transition matrix is analyzed.
First, consider the stationary probabilities of the metastable
states, as provided by the first left eigenvector of T���. The
stationary probabilities were computed for each sample T���.
In order to avoid the average to be dominated by the few
most-populated states, the mean relative uncertainty was
computed via

�̄r��i� =
1

m
�
i=1

m
���i�
���i�

, �23�

where ���i� and ���i� are the means and standard deviations
of the stationary probability of state i, respectively. These
mean relative uncertainties are shown in Fig. 10. It is appar-
ent that introducing detailed balance has almost no effect on
the uncertainties in the stationary probabilities.

Another property of interest is the committor probability
of each state, with respect to two end states A and B. Here,
the two metastable states with the most distant values in the
second eigenvector were chosen as A and B, thus represent-
ing the states between which the slowest transition in the
system occurs. The committor was computed for each
sample of T��� using Eq. �9� and its mean relative uncertain-
ties are shown in Fig. 11. This shows that the uncertainties of
a property derived from T��� decrease with increasing simu-
lation time, even if new states being found as the simulation
proceeds. It is apparent that incorporating detailed balance
somewhat reduces the uncertainties of the committor. This is
expected since the committor is a dynamical property and
thus benefits from the reduced uncertainty in the off-diagonal
elements of the transition matrix observed in Fig. 9�b�. Simi-
larly as the off-diagonal transition matrix elements, the com-
mittor uncertainties decay with increasing simulation time
approximately by a power law that is slower than t−0.5.

Finally, another interesting property of T is its spectrum,
i.e., its eigenvalues 	i with i� �1, . . . ,m�, which indicate the
time scales of the transition processes in the system, ti

�, via
Eq. �8�. Due to the distribution of T, there is not a unique
eigenvalue spectrum for a given observed transition count C
but rather a spectral distribution. With an increased number
of observed transition counts, the uncertainties of individual
	i will decrease, thus allowing for some of these 	i to be
distinguished from the rest of the spectral distribution. Figure
12 shows the spectral distribution for several simulation
lengths. For simulation times up to 100 ns, the spectral dis-
tribution has no distinctive features. With increasing simula-
tion time, some peaks at the large-eigenvalue region start to
form. From 400 ns on, the slowest transition process at 	2
�0.75 can be clearly distinguished and continues to narrow
with yet increasing simulation time. At 1000 ns, the spectrum
exhibits a lot of structure in the range 	�0.5, but apart from
	2 no peaks are clearly separated. This indicates that even for
a small peptide, 1 �s simulation time is rather short when
good convergence of the kinetics is expected. Introducing
detailed balance somewhat shifts large-eigenvalue �slow
time� range of the spectrum to the right. In order to better see
how the uncertainty of individual eigenvalues changes with
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sampling length, the relative uncertainties of second- and
third-largest eigenvalues are plotted in Fig. 13. The uncer-
tainties decay roughly with t0.5 with increasing simulation
time t, which is reasonable for a Markovian system as the
estimate of the eigenvalues depends on the number of ob-
served transitions along the corresponding eigenvector which
itself is proportional to the sampling time. Again, introducing
detailed balance significantly reduces the uncertainties since
the eigenvalues are dynamic properties.

V. CONCLUSION

Methods were introduced for approximating the probabil-
ity density of Markov transition matrices induced by ob-
served transition counts. Algorithms are given for sampling
stochastic matrices and stochastic matrices that fulfill de-
tailed balance. The algorithms are based on Metropolis
Monte Carlo, are easy to implement, and exhibit good con-
vergence properties.

Molecular dynamics in equilibrium always fulfills de-
tailed balance. It has been shown that including detailed bal-
ance can significantly alter the distribution of transition ma-
trices. In particular, it may reduce the uncertainties of some
transition matrix properties, which may be essential when
computing kinetic properties, such as transition pathways or
rates.
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APPENDIX

1. Proof of correctness

The proposed MCMC scheme generates an ensemble of
transition count matrices K distributed according to
pZ�u�K��. It remains to prove that the ensemble of transition
matrices T= �u�K�� resulting from the transformation
K�T=u�K� is indeed distributed according to pZ�T�.

In order to motivate the need of a restriction of the
MCMC scheme on a subset K�Rm2

notice that the transfor-
mation u�K� is a projection. In particular, u�K� is not injec-
tive because, e.g.,

u�K� = u�
K� ∀ 
 � R, 
 � 0,

which further shows that without any constraints on the en-
semble K the statistical weight of u�K� would not be well
defined. Fortunately, the lack of invertibility can be compen-
sated by a restriction of the MCMC scheme on an appropri-
ate state space. In the nonreversible case it turns out that the
restriction of the MCMC scheme on the set

K12

k−
1

k+
1

1

k−
1 1 k+

1

F

k+
1

k−
1

0 1 T11

K11 α1

1

FIG. 14. Schematic illustration of the transformation F used in
the proof of Theorem V.1 and the particular choice of the set K in
Eq. �24�. A row-vector �K11,K12� of a 2�2 transition count matrix
K is mapped via the transformation F into the �
1 ,T11� space and
vice versa.
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FIG. 12. �Color online� Distributions of the eigenvalue spectrum of T for different simulation lengths. The distributions are shown for the
ensembles of transition matrices �nonreversible, first row� and transition matrices with detailed balance �reversible, second row�.
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K = 
K � R0+
m2

:ki
− � �

j=1

m

Kij � ki
+, i = 1, . . . ,m� �A1�

with 0�ki
−�ki

+, i=1, . . . ,m, leads to the right statistical
weights. For a schematic illustration of Eq. �24� see Fig. 14.

Theorem V.1. Let K= �K�K� be an ensemble of count
matrices distributed according to pZ�u�K��. Then the en-
semble T= �u�K� :K�K� is distributed according to pZ�T�,
i.e.,

P�u�K� = T� = cpZ�T� ∀ T � T ,

where c�0 is a positive constant independent of the matrix
T.

Proof. The probability P�u�K�=T� can formally be written
as

P�u�K� = T� = �
u−1�T�

pZ�u�K��dK . �A2�

Since the map u�K� is a projection, the inverse u−1�T� is not
unique. However, for an T�T the inverse can be parameter-
ized by

u−1�T� = �diag�
1, . . . ,
m�T�

with 
i� �ki
− ,ki

+�, i=1, . . . ,m. In order to evaluate the inte-
gral in Eq. �25� we change variables via

F:K � �
1,T11, . . . ,T1,m−1,
2,T21, . . . ,T2,m−1, . . . ,
m,Tm1, . . . ,Tm,m−1� , �A3�

where 
i=� j=1
m Kij and Tij =

Kij

�n=1
m Kin

, 1� i�m. See Fig. 14 for a schematic illustration of F�K�.
Lemma V.2. Here

�
u−1�T�

pZ�u�K��dK = �
k1

−

k1
+

. . .�
km

−

km
+

pZ�T�
1
m−1 . . . 
m

m−1d
1 . . . d
m.

Proof. The transformed integrand in the new variables is
given in �26�,

pZ�u�F−1���det�J�F−1��� , �A4�

where J�F−1� is the Jacobian of the transformation F−1 which
takes the form

F−1:�
1,T11, . . . ,T1,m−1, . . . ,
m,Tm1, . . . ,Tm,m−1�

� �K11, . . . ,Kmm� ,

Kij =

iTij if 1 � i � m, 1 � j � m − 1


i�1 − � j=1

m−1
Tij� if j = m . �

�A5�

Let �
1 ,T11, . . . ,T1,m−1 , . . . ,
m ,Tm1 , . . . ,Tm,m−1��F�u−1�T��
then the first factor in Eq. �27� reduces to pZ�T�.
The Jacobian in Eq. �27� has a diagonal block struc-
ture since �Ki1 , . . . ,Kim� for a fixed i depends only on

�
i ,Ti1 , . . . ,Ti,m−1�. Thus, det�J�=det�J1� . . .det�Jm� with

det Ji = �
Ti1 
i 0 0 . . .

Ti2 0 
i 0 . . .

] ] � � ]

Ti,m−1 0 . . . . . . 
i

1 − � j=1

m−1
T1j − 
i . . . . . . − 
i

�
= �

Ti1 
i 0 0 . . .

Ti2 0 
i 0 . . .

] ] � � ]

Ti,m−1 0 . . . . . . 
i

1 0 . . . . . . 0
� = �− 1��d−1�

��
1 0 . . . . . . 0

Ti1 
i 0 0 . . .

Ti2 0 
i 0 . . .

] ] � � ]

Ti,m−1 0 . . . 0 
i

� = �− 1��m−1�
i
�m−1�.

Thus, �det�J��=
1
�m−1� . . .
m

�m−1�. �
It follows that
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P�u�K� = T� = �
u−1�T�

pZ�u�K��dK

= �
k1

−

k1
+

. . .�
km

−

km
+

pZ�T�
1
m−1 . . . 
m

m−1d
1 . . . d
m = cpZ�T� ,

where the constant c is independent of the matrix T. �
Finally, we prove the reversible case. Recall the definition

of the set

Ksym = 
K � R+
m2

:K symm.,k− � �
i,j=1

m

Kij � k+�
with 0�k−�k+��.

Theorem V.3. Let K= �K�Ksym� be an ensemble of sym-
metric count matrices distributed according to pZ�u�K��.
Then the ensemble T= �u�K� :K�K� of reversible transition
matrices is distributed according to pZ�T�.

Proof. The proof follows the reasoning of the nonrevers-
ible case. The key observation is that the statistical weight of
a reversible transition matrix T� �u�K� :K�K� is given by

�
�
S�

pZ�u�K��dK ,

where

S = diag��1, . . . ,�m�T

is a symmetric matrix with 
� �k− ,k+� and �= ��i�, i
=1, . . . ,m, is the unique stationary distribution of T.

To motivate the following transformation, notice that for
symmetric K the stationary distribution of T=u�K� is simply
given by

�i =

�
j=1

m

Kij

�
k,j=1

m

Kkj

and we conclude

�iTij =
Kij

�
k,l=1

m

Kkl

.

A short calculation shows that by virtue of the transformation

K � � �
k,l=1

m

Kkl,
K11

�
k,l=1

m

Kkl

, . . . ,
Km,m−1

�
k,l=1

m

Kkl�
and the definition of the set Ksym in Eq. �17� the integral
evaluates to

�
�
S�

pZ�u�K��dK = ��k+�m2−1 − �k−�m2−1�pZ�T� .

�

2. Molecular dynamics setup and Markov model for the model
peptide

A molecular dynamics simulations of the MR121-
GSGS-W peptide in water was performed with a simulation
length of 1 �s. The simulation was performed in explicit
water at 293 K using the GROMOS96 force field �27� and
the GROMACS program �28�. Partial atomic charges for the
dye MR121 were taken from �29�. One peptide molecule in
an extended conformation was solvated with water and
placed in a periodic rhombic dodecahedron box large enough
to contain the peptide molecule and �1.0 nm of solvent on
all sides at a liquid density of 55.32 mol/l ��1 g /cm3�, pro-
ducing 1155 water molecules. Water was modeled by the
simple point charge model �30�. Simulations were performed
in the NVT ensemble using a Berendsen thermostat.

All bond lengths were fixed using the Lincs algorithm
�31� and a time step of 2 fs for numerical integration was
used. Periodic boundary conditions were applied to the simu-
lation box and the long-range electrostatic interactions were
treated with the particle mesh Ewald method �32� using a
grid spacing of 0.12 nm combined with a fourth-order
B-spline interpolation to compute the potential and forces in
between grid points. The real space cutoff distance was set to
0.9 nm. The C-terminal end of the peptide was modeled as
COO− to reproduce a pH of about 7 as in the experimental
conditions �23�. No counter ions were added since the simu-
lation box was already neutral �one positive charge on
MR121 and one negative charge on the terminal COO−�. The
coordinates were saved every �t=0.2 ps.

Next, a transition matrix model was built. To distinguish
all relevant conformations of the system, the peptide coordi-
nates were fitted to the extended configuration and then the
state space was partitioned into small regions using a
k-means clustering with k=1000. A fine-grained transition
matrix, Tfine���, was estimated from the data at �=1 ns. In
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FIG. 15. �Color online� Implied time scales of the Markov
model for MR121-GSGS-W depending on the lag time �. The dif-
ferent curves represent the time scales implied by the eigenvalues of
the transition matrix evaluated at lag time �. This indicates that the
dynamics becomes approximately Markovian at about ��1 ns.
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order to concentrate on the metastable states in the system,
the 1000 fine states were grouped together using the PCCA
+method �33� as described in �4� into 33 metastable sets,
which were used for the transition matrix sampling in the

present paper. In order to determine the lag time �, the im-
plied time scale method proposed in �15� was employed,
indicating that for �=1 ns the transitions are approximately
Markovian �see Fig. 15�.
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